lunes, 16 de septiembre de 2013
RESTA DE VECTORES
La resta de 2 vectores se logra sumando
.
un vector al negativo de otro El
negativo de un vector se determina
construyendo un vector igual en
, .
magnitud pero en dirección opuesta.
resta de vectores
Para restar dos vectores libres vector y vector se suma vector con el opuesto de vector.
Las componentes del vector resta se obtienen restando las componentes de los vectores.
Tomado de: http://www.vitutor.com/geo/vec/a_6.html
TIPOS DE VECTORES
VECTORES EQUIPOLENTES. Cuando dos vectores tienen el mismo módulo, dirección y sentido se dice que son equipolentes. ¿Qué quiere decir? Que miden igual, se encuentran en líneas paralelas y apuntan hacia el mismo lado.
VECTORES LIBRES: El conjunto de los vectores equipolentes recibe el nombre de vectores libres. Es decir, que un vector libre es el grupo de vectores que cuentan con el mismo modulo, dirección y sentido.
VECTORES FIJOS: un vector fijo es el representante de un vector libre. Es decir que estos serán iguales sólo si tienen igual módulo, dirección, sentido y si cuentan con el mismo punto inicial.
VECTORES LIGADOS: son aquellos vectores equipolentes que se encuentran en la misma recta. Así, esta clase de vectores tendrán la igual dirección, módulo, sentido y además formarán parte de la misma recta.
VECTORES OPUESTOS: cuando dos vectores tienen la misma dirección, el mismo módulo pero distinto sentido reciben el nombre de vectores opuestos.
VECTORES UNITARIOS: son vectores de módulo uno. Si se quiere obtener un vector unitario con la misma dirección y sentido, a partir del vector dado, se debe dividir a este último por su módulo.
VECTORES CONCURRENTES: si dos vectores tienen el mismo origen se los denomina vectores concurrentes.
tomado de: http://www.tiposde.org/ciencias-exactas/91-tipos-de-vectores/#ixzz2f56HrkRM
VECTORES LIBRES: El conjunto de los vectores equipolentes recibe el nombre de vectores libres. Es decir, que un vector libre es el grupo de vectores que cuentan con el mismo modulo, dirección y sentido.
VECTORES FIJOS: un vector fijo es el representante de un vector libre. Es decir que estos serán iguales sólo si tienen igual módulo, dirección, sentido y si cuentan con el mismo punto inicial.
VECTORES LIGADOS: son aquellos vectores equipolentes que se encuentran en la misma recta. Así, esta clase de vectores tendrán la igual dirección, módulo, sentido y además formarán parte de la misma recta.
VECTORES OPUESTOS: cuando dos vectores tienen la misma dirección, el mismo módulo pero distinto sentido reciben el nombre de vectores opuestos.
VECTORES UNITARIOS: son vectores de módulo uno. Si se quiere obtener un vector unitario con la misma dirección y sentido, a partir del vector dado, se debe dividir a este último por su módulo.
VECTORES CONCURRENTES: si dos vectores tienen el mismo origen se los denomina vectores concurrentes.
tomado de: http://www.tiposde.org/ciencias-exactas/91-tipos-de-vectores/#ixzz2f56HrkRM
SUMA DE VECTORES
La definición suma de vectores en el orden u+v produce otro vector, es como encadenar, siempre visualmente, un vector u y luego uno v. Diremos que u+v se simplifica como un vector w o que w descompone como suma de vectores u y v.
1) Decir que u+v=v+u, es exigir que las dos sumas simplifiquen en el mismo vector, en negro. Véase que en física los vectores en rojo simulan la descomposición de fuerzas ejercidas por el vector negro en su origen, y se representa con un paralelogramo.
2) Decir que u+(v+w)=(u+v)+w, es exigir que las simplificaciones de sumas de vectores puedan ser optativas en cualquier cadena de sumas.
3) Decir que existe un vector cero (elemento neutro) tal que u+0=u, equivale a exigir que exista un vector incapaz de efectuar, mediante la suma, modificación alguna a todos los vectores.
4) Decir que u+(-u)=0, es exigir la existencia de un elemento opuesto, -u, que sumado a u simplifique en un vector cero.
Tomado de: http://es.wikipedia.org/wiki/Vector
1) Decir que u+v=v+u, es exigir que las dos sumas simplifiquen en el mismo vector, en negro. Véase que en física los vectores en rojo simulan la descomposición de fuerzas ejercidas por el vector negro en su origen, y se representa con un paralelogramo.
2) Decir que u+(v+w)=(u+v)+w, es exigir que las simplificaciones de sumas de vectores puedan ser optativas en cualquier cadena de sumas.
QUE ES UN VECTOR
En Física, un vector (también llamado vector euclidiano o vector geométrico) es una herramienta geométrica utilizada para representar una magnitud física definida por su módulo (o longitud), su dirección (u orientación) y su sentido (que distingue el origen del extremo). Los vectores en un espacio euclídeo se pueden representar geométrica mente como segmentos de recta dirigidos («flechas») en el plano \R^2 o en el espacio \R^3.
En Matemáticas se define un vector como un elemento de un espacio vectorial, esta noción es más abstracta y para muchos espacios vectoriales no es posible representar sus vectores mediante el módulo, la longitud y la orientación (ver espacio vectorial). En particular los espacios de dimensión infinita sin producto escalar no son representables de ese modo.
Algunos ejemplos de magnitudes físicas que son magnitudes vectoriales: la velocidad con que se desplaza un móvil, ya que no queda definida tan sólo por su módulo (lo que marca el velocímetro, en el caso de un automóvil), sino que se requiere indicar la dirección y el sentido (hacia donde se dirige); la fuerza que actúa sobre un objeto, ya que su efecto depende, además de su intensidad o módulo, de la dirección en la que actúa; también, el desplazamiento de un objeto.
tomado de: http://es.wikipedia.org/wiki/Vector
En Matemáticas se define un vector como un elemento de un espacio vectorial, esta noción es más abstracta y para muchos espacios vectoriales no es posible representar sus vectores mediante el módulo, la longitud y la orientación (ver espacio vectorial). En particular los espacios de dimensión infinita sin producto escalar no son representables de ese modo.
Algunos ejemplos de magnitudes físicas que son magnitudes vectoriales: la velocidad con que se desplaza un móvil, ya que no queda definida tan sólo por su módulo (lo que marca el velocímetro, en el caso de un automóvil), sino que se requiere indicar la dirección y el sentido (hacia donde se dirige); la fuerza que actúa sobre un objeto, ya que su efecto depende, además de su intensidad o módulo, de la dirección en la que actúa; también, el desplazamiento de un objeto.
tomado de: http://es.wikipedia.org/wiki/Vector
lunes, 2 de septiembre de 2013
CARACTERÍSTICAS DE UN VECTOR
Coordenadas cartesianas.
Un vector se puede definir por sus coordenadas, si el vector esta en el plano xy, se representa:
\vec{V} =
\boldsymbol{V} =
(V_x, V_y)
siendo sus coordenadas: V_x, \; V_y
Siendo el vector la suma vectorial de sus coordenadas: \vec{V} = \vec{V_x} + \vec{V_y}
Coordenadas tridimensionales. Si un vector en de tres dimensiones reales, representado sobre los ejes x, y, z, se puede representar: \vec{V} = \boldsymbol{V} = (V_x, V_y, V_z)
siendo sus coordenadas: V_x, \; V_y, \; V_z
Si representamos el vector gráficamente podemos diferenciar la recta soporte o dirección, sobre la que se traza el vector.
El módulo o amplitud con una longitud proporcional al valor del vector.
El sentido, indicado por la punta de flecha, siendo uno de los dos posibles sobre la recta soporte.
El punto de aplicación que corresponde al lugar geométrico al cual corresponde la característica vectorial representado por el vector.
El nombre o denominación es la letra, signo o secuencia de signos que define al vector.
Por lo tanto en un vector podemos diferenciar:
Nombre
Dirección
Sentido
Modulo
Punto de aplicación
tomado de:http://es.wikipedia.org/wiki/Vector
siendo sus coordenadas: V_x, \; V_y
Siendo el vector la suma vectorial de sus coordenadas: \vec{V} = \vec{V_x} + \vec{V_y}
Coordenadas tridimensionales. Si un vector en de tres dimensiones reales, representado sobre los ejes x, y, z, se puede representar: \vec{V} = \boldsymbol{V} = (V_x, V_y, V_z)
siendo sus coordenadas: V_x, \; V_y, \; V_z
Si representamos el vector gráficamente podemos diferenciar la recta soporte o dirección, sobre la que se traza el vector.
El módulo o amplitud con una longitud proporcional al valor del vector.
El sentido, indicado por la punta de flecha, siendo uno de los dos posibles sobre la recta soporte.
El punto de aplicación que corresponde al lugar geométrico al cual corresponde la característica vectorial representado por el vector.
El nombre o denominación es la letra, signo o secuencia de signos que define al vector.
Por lo tanto en un vector podemos diferenciar:
Nombre
Dirección
Sentido
Modulo
Punto de aplicación
tomado de:http://es.wikipedia.org/wiki/Vector
Suscribirse a:
Entradas (Atom)